
Pascal-like triangles and Fibonacci-like sequences

1. Introduction and mathematical background

In [1], one of the authors of this article demonstrated with three others how Pascal-like triangles arose from
the probabilities associated with the various outcomes of a game of Definition 1 with the condition that
s = 1. They also showed how Fibonacci-like sequences arose from Pascal-like triangles, and demonstrate the
existence of simple relationships between these Fibonacci-like sequences and the Fibonacci sequence itself.
In this article, the authors generalize the result of [1], and they show that Pascal-like triangles arise also
from a game of Definition 1 for an arbitrary natural number p, and Fibonacci-like sequences arise from these
Pascal-like triangles. The following Definition 1 is the same as Definition 1 in [1] when s = 1.

Definition 1. Let p, n,m and s be fixed positive integers, with m ≤ n. There are p players Θ1,Θ2, ...,Θp

seated around a circular table, and the game starts with player Θ1. Proceeding in order, a box containing n
identically-sized cards is passed from hand to hand. All of these cards are white except for m of them, which
are red. When a player receives the box he or she draws out a card at random (i.e. the player cannot see
inside the box) s times, and these cards are not returned to the box. In this way, Player Θ1 draws a card in
the first round, the second round,...,s th round. We call this group of rounds Player Θ1’s turn. Then, Player
Θ2 draws a card in the s + 1 th,...,2s th round. We call this group of rounds Player Θ2’s turn. The game
continues and Player Θp draws a card in the (p− 1)s+ 1 th,...,(p− 1)s+ p = ps th round. Then we call the
group of Player Θ1’s turn, Player Θ2’s turn,...,Player Θp’s turn as the first period. Next, Player Θ1 draws a
card again, and the game contiues. In other words, a player’s turn consists of s rounds, and a period consists
of p turns. The first player to draw out a red card loses the game, and the game ends at this round.

In the remainder of this section, the authors present some results of [1], and they use Definition 1 for
s = 1. The following definition is the same as Definition 2 of [1].

Definition 2. Let U(p, n,m, v) =
∑t−1

z=0 n−v−pzCm−1, where t = ⌊n−m+p−v+1
p ⌋.

Lemma 1. U(p, n,m, v) is the possible arrangements of positions of the m red cards that would lead to
Player Θv losing the game when s = 1.

This is from Definition 2 and the comment following Definition 2 in [1].

Definition 3. Let f(p, n,m, v) be the probability that the v th player loses in the game of Definition 1 when
s = 1.

Theorem 1. f(p, n,m, v) = U(p,n,m,v)

nCm
.

This is Theorem 1 of [1].

Theorem 2. For any positive integers n,m, p and v such that m ≤ n and v ≤ p , U(p, n,m, v)+U(p, n,m+
1, v) = U(p, n+ 1,m+ 1, v).

This is Theorem 2 of [1].

Remark 1. By Theorem 1 and Theorem 2, the set {f(p, n,m, v) : m ≤ n, n = 1, 2, ...} has a pattern similar
to Pascal’s triangle for fixed positive integers p and v.

Example 1. Here, we assume that p = 2 and v = 1. As an illustrative example for Remark 1, the Pascal-like
triangle formed from {f(2, n,m, 1), 1 ≤ m ≤ n, n = 1, 2, ..., 6, 7} is shown in Figure 1. Clearly, the triangle
in Figure 1 has an elegant property. For example, see f(2, 6, 2, 1) = 9

15 , f(2, 6, 3, 1) =
13
20 , f(2, 7, 3, 1) =

22
35 .

Note that 9 + 10 = 16 and 15 + 20 = 35. As you see in Figure 1, the denominators and numerators of the
fractions form Pascal-like triangles.
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Numbers in Figure 2 and Figure 3 are the numerators of the fractions in Figure 1.
It is well known that the numbers on diagonals of the Pascal’s triangle add to the Fibonacci sequence,

but the numbers on diagonals of the triangle in Figure 2 add to Fibonacci like sequences. Let bn be the
sequence that is made in this way. Then, b1 = 1, b2 = 1, b3 = 2 + 1 = 3, b4 = 2 + 2 = 4, b5 = 3 + 4 + 1 =
8, b6 = 3 + 6 + 3 = 12, b7 = 4 + 9 + 7 + 1 = 21, · · · . In Figure 3 we demonstrate how we added the numbers
in the triangle to make b5 = 3 + 4 + 1 = 8. These numbers are printed in bold letter.

The definition of bn, n = 1, 2, 3, ... is given in (1.1).

bn =

⌊n−1
2 ⌋∑

k=0

U(2, n− k, k + 1, 1). (1.1)

It is easy to see that the rule of this sequence is

bn = bn−1 + bn−2 +

{
1 (n = 1 (mod 2))

0 (n ̸= 1 (mod 2)) .
(1.2)

2. Generalized Games That Produce Pascal-like Triangle

In this section, we generalize the result of [1] presented in Section 1. The game of Definition 1 for s = 1 is
mathematically the same as a Russian roulette game in which p players take turns and shoot themselves. To
calculate the probability of the game of Definition 1 for an arbitrary natural number s, it is also easier to
use the data structure of Russian roulette. We suppose that cards are arranged in a cylinder-like component
as the Figure 4 into which n cards are placed. First, the card on the far left is to be picked up, and the last
card to be picked up is on the far right.

Figure 4. cards on n squares

The following Lemma 2 presents a well known formula, and we use this very often throughout this article.

Lemma 2.

nCm +n Cm+1 =n+1 Cm+1. (2.1)

Definition 4. We denote by R(n,m, y) the number of combinations of positions of red cards and white cards
when the game ends in the y th round. Note that R(n,m, y) is independent of p and s, where p is the number
of players and s is the number of times a player draws a card in his or her turn.

Lemma 3. For any natural number n,m, y such that m ≤ n and y ≤ n−m+ 1, R(n,m, y) = n−yCm−1.

Proof. The game ends in the y th round if a red card is in the y th place and other m − 1 red cards are
positioned after the yth place. There are n−yCm−1 ways to arranging the cards in this way so n−yCm−1 gives
us the number of ways that the game can end in the y th round.

Example 2. We calculate R(6, 3, 3) that is the number of combinations of positions of three red cards and
three white cards when the game ends in the 3 rd round. The game ends in the 3 th round if a card with
red number is in the 3 th round and other two red cards are positioned after the 3th place. There are 3C2

ways to put cards with red cards into places this way. Therefore R(6, 3, 3) = 3C2.
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Definition 5. We denote by U(p, n,m, s, v) the number of combinations of positions of red cards that Θv

(the v−th player) loses the game of Definition 1.

Theorem 3.

U(p, n,m, s, v) =
s∑

h=1

⌊n−m−s(v−1)−h+1+ps
ps ⌋∑
i=1

n−(i−1)ps−s(v−1)−hCm−1. (2.2)

Proof. First, the v th player Θv draws a card at s(v − 1) + 1 th round, s(v− 1) + 2 th round, ...,s(v− 1) + s
= sv th round in the first period. The game continues in this way, and the v th player Θv draws a card at
(i− 1)ps+ s(v− 1)+ 1 th round, (i− 1)ps+ s(v− 1)+ 2 th round, ...,(i− 1)ps+ s(v− 1)+ s = (i− 1)ps+ sv
th round in the i th period.

For a natural number h such that 1 ≤ h ≤ s, the v−th player can lose the game at (i−1)ps+ s(v−1)+h
th round if a red card is in (i− 1)ps+ s(v − 1) + h th round and other m− 1 red cards are positioned after
the (i− 1)ps+ s(v − 1) + h th place. Then,

n− (i− 1)ps− s(v − 1)− h ≥ m− 1 (2.3)

, and there are

n−(i−1)ps−s(v−1)−hCm−1 (2.4)

ways to put cards into places this way.
By (2.3)

1 ≤ i ≤ ⌊n−m− s(v − 1)− h+ 1 + ps

ps
⌋. (2.5)

By (2.4) and (2.5) we have (2.2).

Lemma 4.

U(p, n+ 1,m+ 1, s, v) = U(p, n,m+ 1, s, v) + U(p, n,m, s, v).

Proof. By Theorem 3

U(p, n+ 1,m+ 1, s, v) =
s∑

h=1

⌊n−m−s(v−1)−h+1+ps
ps ⌋∑
i=1

n+1−(i−1)ps−s(v−1)−hCm, (2.6)

U(p, n,m+ 1, s, v) =
s∑

h=1

⌊n−m−s(v−1)−h+ps
ps ⌋∑
i=1

n−(i−1)ps−s(v−1)−hCm. (2.7)

and

U(p, n,m, s, v) =
s∑

h=1

⌊n−m−s(v−1)−h+1+ps
ps ⌋∑
i=1

n−(i−1)ps−s(v−1)−hCm−1. (2.8)

We fix h. If we prove that (2.9) is equal to the sum of (2.10) and (2.11), (2.6) is equal to the sum of (2.7)
and (2.8). Then the proof of this lemma is finished.

⌊n−m−s(v−1)−h+1+ps
ps ⌋∑
i=1

n+1−(i−1)ps−s(v−1)−hCm. (2.9)

⌊n−m−s(v−1)−h+ps
ps ⌋∑
i=1

n−(i−1)ps−s(v−1)−hCm. (2.10)

⌊n−m−s(v−1)−h+1+ps
ps ⌋∑
i=1

n−(i−1)ps−s(v−1)−hCm−1. (2.11)
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For i such that ⌊n−m−s(v−1)−h+1+ps
ps ⌋ ≥ ⌊n−m−s(v−1)−h+ps

ps ⌋ ≥ i ≥ 1, by using Lemma 2 we get the following
equation.

n+1−(i−1)ps−s(v−1)−hCm =n−(i−1)ps−s(v−1)−h Cm +n−(i−1)ps−s(v−1)−h Cm−1. (2.12)

We have two cases.
Case (a) If ⌊n−m−s(v−1)−h+1+ps

ps ⌋ = ⌊n−m−s(v−1)−h+ps
ps ⌋, then by (2.12) the proof is finished.

Case (b) We suppose that

⌊n−m− s(v − 1)− h+ 1 + ps

ps
⌋ > ⌊n−m− s(v − 1)− h+ ps

ps
⌋. (2.13)

By (2.13) we know that (2.10) does not have the ⌊n−m−s(v−1)−h+1+ps
ps ⌋th term, and hence we compare the

⌊n−m−s(v−1)−h+1+ps
ps ⌋th term of (2.9) and (2.11).

By (2.13)

⌊n−m− s(v − 1)− h+ 1 + ps

ps
⌋ = n−m− s(v − 1)− h+ 1 + ps

ps
. (2.14)

Let i = ⌊n−m−s(v−1)−h+1+ps
ps ⌋. Then by (2.14)

n+1−(i−1)ps−s(v−1)−hCm

=n+1−(n−m−s(v−1)−h+1)−s(v−1)−h Cm

=m Cm = 1 =m−1 Cm−1

=n−(n−m−s(v−1)−h+1)−s(v−1)−h Cm−1

=n−(i−1)ps−s(v−1)−h Cm−1,

and hence the i th term of (2.9) is equal to the i th term of (2.11). Therefore, (2.9) is equal to the sum of
(2.10) and (2.11), and the proof of this lemma is finished.

Theorem 4. f(p, n,m, s, v) = U(p,n,m,s,v)

nCm
.

Proof. This is direct from Definition 5.

By Lemma 4 and Theorem 4, {f(p, n,m, s, v) : m ≤ n, n = 1, 2, ...} has a pattern similar to Pascal’s
triangle for fixed positive integers p, s, v.

3. Fibonacci-like Sequence Produced by Pascal-like Sequence

We generalize the result on Fibonacci-like sequence presented in Section 1. In the remainder of this article,
we suppose that v = 1 to make the argument simpler.

Lemma 5. Let t be a non-negative integer. Then, we have the following (i) and (ii).
(i) U(p, tps+ u, 1, s, 1) = ts+ u for any natural number u such that 0 ≤ u ≤ s.
(ii) U(p, tps+ u, 1, s, 1) = ts+ s for any natural number u such that s < u ≤ ps.

Proof. For a natural number u such that 0 ≤ u ≤ ps, by Theorem 3

U(p, tps+ u, 1, s, 1) =
s∑

h=1

⌊ tps+u−h+ps
ps ⌋∑
i=1

tps+u−(i−1)ps−hC0 =
s∑

h=1

⌊ tps+ u− h+ ps

ps
⌋. (3.1)

(i) If 1 ≤ u ≤ s, then (3.1) is
∑u

h=1(t+ 1) +
∑s

h=u+1 t = st+ u.
(ii) If s < u ≤ ps, then (3.1) is

∑s
h=1(t+ 1) = st+ s.

Lemma 6. U(p, u, u, s, 1) = 1 for any natural number u.
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Proof. By Theorem 3, U(p, u, u, s, 1) =
∑s

h=1

∑⌊−h+1+ps
ps ⌋

i=1 u−(i−1)ps−hCu−1

=
∑1

h=1

∑⌊ ps
ps ⌋

i=1 u−(i−1)ps−1Cu−1 =u−1 Cu−1 = 1.

We generalize the sequence introduced in Example 1, and define Bp,s(n), n = 1, 2, 3, ... in Definition 6.

Definition 6. For natural numbers p and s, let

Bp,s(n) =

⌊n−1
2 ⌋∑

k=0

U(p, n− k, k + 1, s, 1). (3.2)

(3.2) is a generalization of (1.1).

Theorem 5. For a natural number n such that n ≥ 3,

Bp,s(n) = Bp,s(n− 1) +Bp,s(n− 2) +

{
1 (1 ≤ n ≤ s (mod ps))

0 (n = 0 or n ≥ s+ 1 (mod ps)) .
(3.3)

Proof. Let n = tps+ h for non-negative integers t, h such that 0 ≤ h < ps.

Bp,s(tps+ h) = U(p, tps+ h, 1, s, 1) + U(p, tps+ h− 1, 2, s, 1) + ...,

+ U(p, tps+ h− t1, t1 + 1, 1), (3.4)

Bp,s(tps+ h− 1) = U(p, tps+ h− 1, 1, s, 1) + U(p, tps+ h− 2, 2, s, 1) + ...,

+ U(p, tps+ h− 1− t2, t2 + 1, 1) (3.5)

and

Bp,s(tps+ h− 2) = U(p, tps+ h− 2, 1, s, 1) + U(p, tps+ h− 3, 2, s, 1) + ...,

+ U(p, tps+ h− 2− t3, t3 + 1, 1), (3.6)

where t1 = ⌊ tps+ h− 1

2
⌋, t2 = ⌊ tps+ h− 2

2
⌋ and t3 = ⌊ tps+ h− 3

2
⌋. (3.7)

Case (i) First, we assume that tps+ h is an even number, then t1 = t2 = t3 + 1. By Lemma 4, we have for
k = 1, 2, ..., t1
U(p, tps+ h− k, k + 1, s, 1) = U(p, tps+ h− 1− k, k + 1, s, 1) + U(p, tps+ h− 1− k, k, s, 1),
and hence the k+1 th term of (3.4) is equal to the sum of the k+1 th term of (3.5) and the k th term of (3.6).
Therefore, the sum of the 2nd, 3rd, ..., t1 +1th term of (3.4) is equal to the sum of the 2nd, 3rd, ..., t1 +1th
term of (3.5) and the 1st, 2nd, ..., t1th term of (3.6). Therefore we only have to compare the 1st term of (3.4)
and (3.5). The 1st term of (3.4) is U(p, tps+ h, 1, s, 1), and the 1st term of (3.5) is U(p, tps+ h− 1, 1, s, 1).
Therefore,

Bp,s(n)− (Bp,s(n− 1) +Bp,s(n− 2)) = U(p, tps+ h, 1, s, 1)− U(p, tps+ h− 1, 1, s, 1). (3.8)

We have two subcases.
Subcase (a) If 1 ≤ n ≤ s (mod ps), then we have 1 ≤ h ≤ s and 0 ≤ h− 1 ≤ s− 1. Then, by (i) of Lemma 5
(3.8) is equal to ts+ h-(ts+ h− 1) = 1.
Subcase (b) If n = 0 or n ≥ s+ 1 (mod ps), then h = 0 or s+ 1 ≤ h. We have three subsubcases.
Subsubcase (b.1) Suppose that h = 0. Then, by (i), (ii) of Lemma 5 (3.8) is equal to U(p, tps, 1, s, 1) −
U(p, (t− 1)ps+ ps− 1, 1, s, 1) = ts− ((t− 1)s+ s) = 0.
Subsubcase (b.2) Suppose that h = s + 1. Then by (ii), (i) of Lemma 5 (3.8) is equal to U(p, tps + s +
1, 1, s, 1)− U(p, tps+ s, 1, s, 1) = ts+ s− (ts+ s) = 0.
Subsubcase (b.3) Suppose that h > s + 1. Then by (ii) of Lemma 5 (3.8) is equal to U(p, tps + h, 1, s, 1) −
U(p, tps+ h− 1, 1, s, 1) = ts+ s− (ts+ s) = 0.
Therefore we prove this Theorem.
Case (ii) Next we suppose that tps+ h is an odd number. Then t1 = t2 + 1 = t3 + 1.
By Lemma 4 we have for k = 1, 2, ..., t2
U(p, tps+ h− k, k + 1, s, 1) = U(p, tps+ h− 1− k, k + 1, s, 1) + U(p, tps+ h− 1− k, k, s, 1), and hence the
k + 1 th term of (3.4) is equal to the sum of the k + 1 th term of (3.5) and the k th term of (3.6). Then the
sum of the 2nd, 3rd, ..., t2 + 1th term of (3.4) is equal to the sum of the 2nd, 3rd, ..., t2 + 1th term of (3.5)
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and the 1st, 2nd, ..., t3th term of (3.6).
Therefore we only have to compare the 1st and the t1 + 1 = t2 + 2 th terms of (3.4), the 1st term of
(3.5) and the t3 + 1 th term of (3.6). Since tps + h is an odd number, t1 = ⌊ tps+h−1

2 ⌋ = tps+h−1
2 and

t3 = ⌊ tps+h−3
2 ⌋ = tps+h−3

2 . Therefore tps+h− t1 = t1+1 and tps+h−2− t3 = t3+1, and hence by Lemma
6

U(p, tps+ h− t1, t1 + 1, s, 1) = U(p, tps+ h− 2− t3, t3 + 1, s, 1) = 1. (3.9)

Therefore by (3.9) and Lemma 5

Bp,s(n)− (Bp,s(n− 1) +Bp,s(n− 2))

= (U(p, tps+ h, 1, s, 1) + U(p, tps+ h− t1, t1 + 1, s, 1))

− (U(p, tps+ h− 1, 1, s, 1) + U(p, tps+ h− 2− t3, t3 + 1, s, 1))

= U(p, tps+ h, 1, s, 1)− U(p, tps+ h− 1, 1, s, 1). (3.10)

Then we prove this theorem using a method that is the similar to the method used in Case (i).

4. The Properties of the Sequence Bp,s(n)

There are some interesting properties of Bp,1(n).

Lemma 7. Let p be a natural number. Then, we have the following (i), (ii) and (iii).

(i)Bp,1(1) = Bp,1(2) = 1.

(ii)Bp,2(1) = 1.

(iii)Bp,2(2) = 2.

Proof. Since ⌊n−1
2 ⌋ = 0 for n = 1, 2, by Definition 6 for any natural number p

Bp,s(1) = U(p, 1, 1, s, 1) (4.1)

and

Bp,s(2) = U(p, 2, 1, s, 1). (4.2)

By (i) of Lemma 5, we have for s = 1, 2

U(p, 1, 1, s, 1) = 1. (4.3)

By (ii) of Lemma 5, we have for s = 1

U(p, 2, 1, s, 1) = 1. (4.4)

By (i) of Lemma 5, we have for s = 2

U(p, 2, 1, s, 1) = 2. (4.5)

By (4.1), (4.2), (4.3) and (4.4) we have (i), and by (4.1) and (4.3) we have (ii). By (4.2) and (4.5) we have
(iii).

Example 3. Here we present Fibonacci-like sequence Bp,s(n) for s = 1, 2 and Fibonacci sequence F (n).
(1) F (n) is {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}.
By Theorem 5 and Lemma 7, for s = 1 we have Bp,1(1) = Bp,1(2) = 1, and for a natural number n such that
n ≥ 3,

Bp,1(n) = Bp,1(n− 1) +Bp,1(n− 2) +

{
1 (n = 1 (mod p))

0 (n = 0 or n ≥ 2 (mod p)) .
(4.6)

Then,
(2) B2,1(n) is {1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987}.
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(3) B3,1(n) is {1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 116, 188, 305, 493, 798}.
(4) B4,1(n) is {1, 1, 2, 3, 6, 9, 15, 24, 40, 64, 104, 168, 273, 441, 714}.
There are well known relations between B2,1(n), B3,1(n) and the Fibonacci sequence F (n).

B2,1(n) = F (n+ 1)− (1−(−1)n+1)
2 .

B3,1(n) = ⌊(F (n+2)
2 )⌋.

By Theorem 5 and Lemma 7, for s = 2 we have Bp,2(1) = 1, Bp,2(2) = 2, and for a natural number n such
that n ≥ 3,

Bp,2(n) = Bp,2(n− 1) +Bp,2(n− 2) +

{
1 (1 ≤ n ≤ 2 (mod 2p))

0 (n = 0 or n ≥ 3 (mod 2p)) .
(4.7)

Then,
(5) B2,2(n) is {1, 2, 3, 5, 9, 15, 24, 39, 64, 104, 168, 272, 441, 714, 1155 }.
(6) B3,2(n) is {1, 2, 3, 5, 8, 13, 22, 36, 58, 94, 152, 246, 399, 646, 1045 }.
(7) B4,2(n) is {1, 2, 3, 5, 8, 13, 21, 34, 56, 91, 147, 238, 385, 623, 1008 }. B2,2(n) and B3,2(n) have simple
formulas.
B2,2(n) = ⌊((1 +

√
5)/2)

n+3
)/5⌋

B3,2(n) is ⌊F (n+4)
4 ⌋.

5. The General Case of Two Persons

In previous sections, the first player to draw out a red card loses the game, and the game ends at this round.
In the remainder of this article, we change this rule. To make the argument more simple, we study a game
between two players Θ1 and Θ2. For the same reason, we calculate only the combinations for Player Θ1.

Definition 7. Two players Θ1 and Θ2 take turns, and draw a card s1 and s2 times respectively. Each player
stores the cards that he or she draws. If the number of the stored cards for Θ1 or Θ2 reaches g1 or g2, then
Θ1 or Θ2 loses the game respectively.

We denote by U(n,m, s1, s2, g1, g2) the possible arrangements of positions of the m red cards that would
lead to Player Θ1 losing the game.

If m < g1, then Player Θ1 never lose in the game. Therefore, we assume that m ≥ g1 when we calculate
U(n,m, s1, s2, g1, g2).

Theorem 6. We assume that

m ≥ g1. (5.1)

Then,

U(n,m, s1, s2, g1, g2) =

s1∑
h=1

(

min(⌊n−m+g1−h
s1

⌋+1,⌊ n−h
s1+s2

⌋+1,⌊n−m+g1+g2−h−1
s1+s2

⌋+1)∑
k=⌈ g1−h

s1
⌉+1

min(g2−1,m−g1,(k−1)s2)∑
v=max(0,m−n+(k−1)(s1+s2)−g1+h)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1) (5.2)

Proof. Suppose that player Θ1 loses the game by collecting g1 cards in the (k − 1)(s1 + s2) + h th round for
natural numbers k and h such that 1 ≤ h ≤ s1. Since the number of rounds is smaller or equal to the number
of cards,

(k − 1)(s1 + s2) + h ≤ n.

Therefore,

k ≤ ⌊ n− h

s1 + s2
⌋+ 1. (5.3)
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Player Θ1 collects g1 − 1 red cards before player Θ1 draws a red card in the (k− 1)(s1 + s2) + h th round to
lose the game. The number of rounds player Θ1 plays before that is (k − 1)s1 + h− 1. Hence,

(k − 1)s1 + h− 1 ≥ g1 − 1.

Therefore

k ≥ ⌈g1 − h

s1
⌉+ 1. (5.4)

The number of combination of g1 − 1 red cards in these (k − 1)s1 + h− 1 rounds is

(k−1)s1+h−1Cg1−1.

Suppose that player Θ2 collects v red cards before player Θ1 collects g1 red cards. The number of rounds
player Θ2 plays before that is (k − 1)s2, and hence the number of combination of is

(k−1)s2Cv.

Clearly,

(k − 1)s2 ≥ v. (5.5)

A non-negative integer v should be less than g2. Otherwise Θ2 loses the game. Therefore

g2 − 1 ≥ v. (5.6)

Since player Θ2 draws v red cards from remaining m− g1 red cards,

m− g1 ≥ v. (5.7)

The other m− v − g1 red cards are positioned after the (k − 1)(s1 + s2) + h th place, so

n− ((k − 1)(s1 + s2) + h) ≥ m− v − g1

, and there are

n−((k−1)(s1+s2)+h)Cm−v−g1

ways to arranging the cards in this way. Then we have

v ≥ m− n+ (k − 1)(s1 + s2)− g1 + h. (5.8)

Since v ≥ 0, by (5.8)

v ≥ max(0,m− n+ (k − 1)(s1 + s2)− g1 + h). (5.9)

By (5.5), (5.6), (5.7) and (5.9),

(k − 1)s2 ≥ m− n− g1 + h+ (k − 1)(s1 + s2), (5.10)

g2 − 1 ≥ m− n− g1 + h+ (k − 1)(s1 + s2) (5.11)

and

m− g1 ≥ m− n− g1 + h+ (k − 1)(s1 + s2). (5.12)

Note that by the definitions of s2, g2 and (5.1) we have (k − 1)s2 ≥ 0, g2 − 1 ≥ 0 and m− g1 ≥ 0.
By (5.10), (5.11) and (5.12) we have

g1 − h−m+ n

s1
+ 1 =

g1 − h−m+ n+ s1
s1

≥ k, (5.13)

g1 + g2 − h−m+ n− 1

s1 + s2
+ 1 =

g1 + g2 − h−m+ n+ s1 + s2 − 1

s1 + s2
≥ k (5.14)

and

n− h

s1 + s2
+ 1 ≥ k. (5.15)

(5.15) is the same as (5.3). By (5.3),(5.4),(5.5),(5.6),(5.7),(5.9),(5.13) and (5.14) we have (5.2).
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Definition 8. We fix natural numbers s1, s2, g1, g2 and h such that 1 ≤ h ≤ s1, and for natural numbers
n,m, k we define

LOW1 = ⌈g1 − h

s1
⌉+ 1, (5.16)

UPP1(n,m) = min(⌊n−m+ g1 − h

s1
⌋+ 1, ⌊ n− h

s1 + s2
⌋+ 1, ⌊n−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1), (5.17)

LOW2(n,m, k) = max(0,m− n+ (k − 1)(s1 + s2)− g1 + h) (5.18)

and

UPP2(n,m, k) = min(g2 − 1,m− g1, (k − 1)s2). (5.19)

Lemma 8. Suppose that natural numbers a, b, a′, b′ satisfy the following conditions.

min(a, b) > min(a′, b′), (5.20)

a′ + 1 ≥ a ≥ a′ (5.21)

and

b′ + 1 ≥ b ≥ b′. (5.22)

Then, we have (i) or (ii)．
(i) b ≥ a > a′.
(ii) a ≥ b > b′.

Proof. By (5.21) and (5.22) we have the following four cases.
Case(a) Suppose that a = a′ and b = b′. Then this contradicts (5.20).
Case(b) Suppose that a = a′ +1 and b = b′ +1. If b ≥ a, then we have b ≥ a > a′. This is (i). If a ≥ b, then
we have a ≥ b > b′. This is (ii).
Case(c) Suppose that a = a′ + 1 and b = b′. Then, by (5.20) b ≥ a > a′. This is (i).
Case(d) Suppose that a = a′ and b = b′ + 1. Then, by (5.20) a ≥ b > b′. This is (ii).

Example 4. Here, we present the Pascal-like triangles formed from {U(n,m, s1, s2, g1, g2), 1 ≤ m ≤ n, n =
1, 2, ..., 9, 10}, where s1 = 2, s2 = 4, g1 = 2, g2 = 3, in Figure 5 and Figure 6.

Figure 5. Figure 6.

It is clear that some parts of these triangles satisfy (5.23) and other parts do not.

U(n,m, s1, s2, g1, g2) = U(n− 1,m− 1, s1, s2, g1, g2) + U(n− 1,m, s1, s2, g1, g2). (5.23)

By Figure 5, it seems that we have Pascal-like properties of (5.23) for a natural number m that satisfies
(5.24).

m ≥ g1 + g2. (5.24)

We prove this fact in Theorem 7.
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By Figure 6, it seems that we have Pascal-like properties of (5.23) for a natural number n such that

n = (s1 + s2)(t− 1) + s1 + u (5.25)

for natural numbers t, u such that 1 ≤ u ≤ s2. We prove this fact in Theorem 8. For s1 = 2, s2 = 4, g1 =
2, g2 = 3 by (5.25) we have (5.23) for n = 3, 4, 5, 6, 9, 10, ....

Theorem 7. Suppose that

m ≥ g1 + g2. (5.26)

Then

U(n,m, s1, s2, g1, g2) = U(n− 1,m− 1, s1, s2, g1, g2) + U(n− 1,m, s1, s2, g1, g2). (5.27)

Proof. By (5.16), (5.18), (5.17), (5.19) and Theorem 6

U(n,m, s1, s2, g1, g2)

=

s1∑
h=1

UPP1(n,m)∑
k=LOW1

UPP2(n,m,k)∑
v=LOW2(n,m,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1 , (5.28)

U(n− 1,m− 1, s1, s2, g1, g2)

=

s1∑
h=1

UPP1(n−1,m−1)∑
k=LOW1

UPP2(n−1,m−1,k)∑
v=LOW2(n−1,m−1,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1

(5.29)

and

U(n− 1,m, s1, s2, g1, g2)

=

s1∑
h=1

UPP1(n−1,m)∑
k=LOW1

UPP2(n−1,m,k)∑
v=LOW2(n−1,m,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−v−g1 . (5.30)

We are to prove that (5.28) is equal to the sum of (5.29) and (5.30). Let h be a natural number such that
1 ≤ h ≤ s1, and we fix h. By (5.26) we have n− 1−h ≥ n−m+ g1+ g2−h− 1, and hence by (5.17) we have

UPP1(n,m) = UPP1(n− 1,m− 1) = UPP1(n− 1,m) (5.31)

or

UPP1(n,m) = UPP1(n− 1,m− 1) > UPP1(n− 1,m). (5.32)

We have two cases.
Case(a) We suppose that (5.31) is valid. Let k be a natural number such that LOW1 ≤ k ≤ UPP1(n,m).
If we prove that (5.33) is equal to the sum of (5.34) and (5.35), then we have (5.27).

UPP2(n,m,k)∑
v=LOW2(n,m,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1 , (5.33)

UPP2(n−1,m−1,k)∑
v=LOW2(n−1,m−1,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1 (5.34)

and

UPP2(n−1,m,k)∑
v=LOW2(n−1,m,k)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−v−g1 . (5.35)
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By (5.26) we have m− g1 ≥ g2 − 1 and (m− 1)− g1 ≥ g2 − 1. Therefore, by (5.19)

UPP2(n,m, k) = UPP2(n− 1,m− 1, k) = UPP2(n− 1,m, k). (5.36)

By (5.18)

LOW2(n,m, k) = LOW2(n− 1,m− 1, k) ≤ LOW2(n− 1,m, k) (5.37)

, and hence we have the following subcases.
Subcase(a.1) Suppose that LOW2(n,m, k) = LOW2(n− 1,m− 1, k) = LOW2(n− 1,m, k).

For v such that LOW2(n,m, k) ≤ v ≤ UPP2(n,m, k), by Lemma 2 we have

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1

= (k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1

+ (k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−v−g1 . (5.38)

Therefore we have (5.33) = (5.34) + (5.35), and we have (5.27).
Subcase(a.2) Suppose that LOW2(n,m, k) = LOW2(n− 1,m− 1, k) < LOW2(n− 1,m, k). For v such that
LOW2(n− 1,m, k) ≤ v ≤ UPP2(n,m, k), by Lemma 2 we have (5.38).
Therefore the sum of the second, the third, ..., the last term of (5.33) is equal to the sum of the second, the
third,..., the last term of (5.34) and the first, the second, ...,the last term of (5.35), and we have to prove
that the first term of (5.33) is equal to the the first term of (5.34) to prove that (5.33) is the sum of (5.34)
and (5.35). Suppose that 0 > m − n + (k − 1)(s1 + s2) − g1 + h. Then, 0 ≥ m − n + 1 + (k − 1)(s1 +
s2) − g1 + h, and we have LOW2(n,m, k) = LOW2(n − 1,m, k) = 0. This contradicts LOW2(n,m, k) =
LOW2(n − 1,m − 1, k) < LOW2(n − 1,m, k). Therefore 0 ≤ m − n + (k − 1)(s1 + s2) − g1 + h. Let
v = LOW2(n,m, k) = m−n+(k−1)(s1+ s2)− g1+h, then n− (k−1)(s1+ s2)−h = m− v− g1. Therefore
we have n−(k−1)(s1+s2)−hCm−v−g1 = 1 = n−1−(k−1)(s1+s2)−hCm−1−v−g1 , and we have

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1

= (k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1 .

This shows that the first term of (5.33) is equal to the the first term of (5.34).
Case(b) We suppose that (5.32) is valid. Let LOW1 ≤ k ≤ UPP1(n − 1,m), then by the method that is
similar to the one used in (a.1) and (a.2) we have (5.33) = (5.34)+ (5.35). Next, we prove (5.33) = (5.34) for

k = UPP1(n,m) = UPP1(n− 1,m− 1) > UPP1(n− 1,m). (5.39)

By (5.17) and (5.26), ⌊ n−h
s1+s2

⌋+ 1 ≥ ⌊n−m+g1+g2−h−1
s1+s2

⌋+ 1 and ⌊n−1−h
s1+s2

⌋+ 1 ≥ ⌊n−1−m+g1+g2−h−1
s1+s2

⌋+ 1,
and hence by (5.39) we have

k = min(⌊n−m+ g1 − h

s1
⌋+ 1, ⌊n−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1)

> min(⌊n− 1−m+ g1 − h

s1
⌋+ 1, ⌊n− 1−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1).

By Lemma 8 we have the following two subcases.
Subcase(b.1) We suppose that

⌊n−m+ g1 − h

s1
⌋+ 1

≥ ⌊n−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1 = k > ⌊n− 1−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1. (5.40)

By (5.40) we have

n−m+ g1 + g2 − h− 1 = (k − 1)(s1 + s2), (5.41)

and hence

m− n+ (k − 1)(s1 + s2)− g1 + h = g2 − 1. (5.42)
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By (5.32) we have to prove that (5.33) = (5.34) for k that satisfies (5.39). By (5.36) and (5.37), we choose a
non-negative integer v such that LOW2(n− 1,m− 1, k) = LOW2(n,m, k)
≤ v ≤ UPP2(n,m, k) = UPP2(n − 1,m − 1, k). Then by (5.18), (5.19) and (5.42) g2 − 1 = m − n + (k −
1)(s1 + s2) − g1 + h ≤ LOW2(n,m, k) ≤ v ≤ UPP2(n,m, k) ≤ g2 − 1, and hence v = g2 − 1. Then (5.33)
and (5.34) consist of a single term. Therefore by (5.41) n − (k − 1)(s1 + s2) − h = m − g1 − g2 + 1 =
m− (g2 − 1)− g1 = m− v− g1, and we have n−(k−1)(s1+s2)−hCm−v−g1 = 1 = n−1−(k−1)(s1+s2)−hCm−1−v−g1 .

Therefore we have (5.33) = (5.34).
Subcase(b.2) We suppose that

⌊n−m+ g1 + g2 − h− 1

s1 + s2
⌋+ 1

≥ ⌊n−m+ g1 − h

s1
⌋+ 1 = k > ⌊n− 1−m+ g1 − h

s1
⌋+ 1. (5.43)

By (5.43) we have

n−m+ g1 − h = (k − 1)s1. (5.44)

By (5.44) we have

m− n+ (k − 1)(s1 + s2)− g1 + h = (k − 1)s2. (5.45)

By (5.36) and (5.37) we choose a non-negative integer v such that LOW2(n−1,m−1, k) = LOW2(n,m, k) ≤
v ≤ UPP2(n,m, k) = UPP2(n− 1,m− 1, k). Then by (5.18), (5.19) and (5.45), (k − 1)s2 = m− n+ (k −
1)(s1+s2)−g1+h ≤ LOW2(n,m, k) ≤ v ≤ UPP2(n,m, k) ≤ (k−1)s2, and hence v = (k−1)s2. Then (5.33)
and (5.34) consist of a single term. Therefore by (5.45) n−(k−1)(s1+s2)−h = m−g1−(k−1)s2 = m−v−g1,
and we have

n−(k−1)(s1+s2)−hCm−v−g1 = 1 = n−1−(k−1)(s1+s2)−hCm−1−v−g1 .

Therefore we have (5.33) = (5.34).

Theorem 8. Suppose that

n = (s1 + s2)(t− 1) + s1 + u (5.46)

for natural numbers t, u such that 1 ≤ u ≤ s2.
Then

U(n,m, s1, s2, g1, g2) = U(n− 1,m− 1, s1, s2, g1, g2) + U(n− 1,m, s1, s2, g1, g2). (5.47)

Proof. If m ≥ g1 + g2, then by Theorem 7 we have (5.47). Therefore, in this proof we assume that

m < g1 + g2. (5.48)

By (5.48) n− h ≤ n−m+ g1 + g2 − h− 1, and hence by Definition 8

UPP1(n,m) = min(⌊n−m+ g1 − h

s1
⌋+ 1, ⌊ n− h

s1 + s2
⌋+ 1), (5.49)

UPP1(n− 1,m− 1) = min(⌊n−m+ g1 − h

s1
⌋+ 1, ⌊n− 1− h

s1 + s2
⌋+ 1) (5.50)

and

UPP1(n− 1,m) = min(⌊n− 1−m+ g1 − h

s1
⌋+ 1, ⌊n− 1− h

s1 + s2
⌋+ 1). (5.51)

Since 1 ≤ h ≤ s1 and 1 ≤ u ≤ s2, by (5.46) we have (s1 + s2)(t− 1) ≤ n− h− 1 < n− h ≤ (s1 + s2)(t− 1) +
s1 + s2 − 1. Therefore

⌊ n− h

s1 + s2
⌋+ 1 = ⌊n− 1− h

s1 + s2
⌋+ 1. (5.52)
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By (5.49), (5.50), (5.51) and (5.52) we have

UPP1(n,m) = UPP1(n− 1,m− 1) ≥ UPP1(n− 1,m).

(5.53)

(a) Suppose that UPP1(n,m) = UPP1(n− 1,m− 1) = UPP1(n− 1,m). We fix k such that LOW1 ≤ k ≤
UPP1(n,m).
We are to prove that (5.54) is the sum of (5.55) and (5.56).

UPP2(n,m,k)∑
v=LOW2(n,m,k)

((k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1), (5.54)

UPP2(n−1,m−1,k)∑
v=LOW2(n−1,m−1,k)

((k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1) (5.55)

and

UPP2(n−1,m,k)∑
v=LOW2(n−1,m,k)

((k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−v−g1). (5.56)

For a fixed v, we compare (5.57), (5.58) and (5.59).

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−(k−1)(s1+s2)−hCm−v−g1 , (5.57)

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−1−v−g1 (5.58)

and

(k−1)s2Cv × h+(k−1)s1−1Cg1−1 × n−1−(k−1)(s1+s2)−hCm−v−g1 . (5.59)

By Definition 8

LOW2(n,m, k) = LOW2(n− 1,m− 1, k) ≤ LOW2(n− 1,m, k)

and

UPP2(n,m, k) = UPP2(n− 1,m, k) ≥ UPP2(n− 1,m− 1, k).

(a.1). Suppose that LOW2(n,m, k) = LOW2(n − 1,m − 1, k) = LOW2(n − 1,m, k) and UPP2(n,m, k) =
UPP2(n− 1,m, k) = UPP2(n− 1,m− 1, k). For a non-negative integer v such that LOW2(n,m, k) ≤ v ≤
UPP2(n,m, k), by Lemma 2 (5.57) is equal to the sum of (5.58) and (5.59), and hence (5.54) is the sum of
(5.55) and (5.56).
(a.2). Suppose that LOW2(n,m, k) = LOW2(n − 1,m − 1, k) = m − n + (k − 1)(s1 + s2) − g1 + h <
m + 1 − n + (k − 1)(s1 + s2) − g1 + h = LOW2(n − 1,m, k) or UPP2(n,m, k) = UPP2(n − 1,m, k) =
m−g1 > m−1−g1 = UPP2(n−1,m−1, k). Let v be a non-negative integer v such that LOW2(n−1,m) ≤
v ≤ UPP2(n − 1,m − 1, k). Then by Lemma 2 (5.57) is equal to the sum of (5.58) and (5.59). Let v =
LOW2(n,m, k) = LOW2(n−1,m−1, k) = m−n+(k−1)(s1+s2)−g1+h. Then n−(k−1)(s1+s2)−hCm−v−g1 =

n−(k−1)(s1+s2)−hCn−(k−1)(s1+s2)−h = 1.
Similarly, n−1−(k−1)(s1+s2)−hCm−1−v−g1 = n−1−(k−1)(s1+s2)−hCn−1−(k−1)(s1+s2)−h = 1.
Therefore (5.57) is equal to (5.58).
Let v = UPP2(n,m, k) = UPP2(n− 1,m, k) = m− g1. Then, we have

n−(k−1)(s1+s2)−hCm−v−g1 = n−(k−1)(s1+s2)−hC0 = 1 and n−1−(k−1)(s1+s2)−hCm−v−g1 = n−1−(k−1)(s1+s2)−hC0 =
1.
Therefore we have (5.57) is equal to (5.59).
(b) Suppose that UPP1(n,m) = UPP1(n − 1,m − 1) > UPP1(n − 1,m). By (5.52) we have ⌊ n−h

s1+s2
⌋ =

⌊n−1−h
s1+s2

⌋, and hence

⌊n− h− 1

s1 + s2
⌋+ 1 ≥ ⌊n−m+ g1 − h

s1
⌋+ 1 = UPP1(n,m) > UPP1(n− 1,m) = ⌊n− 1−m+ g1 − h

s1
⌋+ 1.

(5.60)

13



Let k = UPP1(n,m) = UPP1(n− 1,m− 1). Then by (5.60) n−m+g1−h
s1

= k − 1, and hence

n−m+ g1 − h = (k − 1)s1. (5.61)

Then by (5.60) we have n−h−1
s1+s2

≥ k − 1, and we have

n− h− 1 ≥ (k − 1)(s1 + s2). (5.62)

By (5.61) and (5.62)

m− g1 − 1 ≥ s2(k − 1). (5.63)

By (5.48) we have g2 − 1 ≥ m− g1, and hence by (5.63)

UPP2(n− 1,m− 1, k) = UPP2(n,m, k) = (k − 1)s2. (5.64)

By (5.18) and (5.61)

(k − 1)s2 = m− n+ (k − 1)(s1 + s2)− g1 + h ≤ LOW2(n,m, k). (5.65)

Let v be a natural number such that LOW2(n − 1,m − 1, k) = LOW2(n,m, k) ≤ v ≤ UPP2(n,m, k) =
UPP2(n− 1,m− 1, k). Then, by (5.64) and (5.65) we have v = (k − 1)s2, and hence by (5.61) n− 1− (k −
1)(s1 + s2)− h = m− 1− (k − 1)s2 − g1 = m− 1− v − g1. Therefore (5.57) is equal to (5.58), and (5.54) is
equal to (5.55)
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