Many people think it impossible for high school students to discover new formulas and theorems, but they are wrong!

Here, we present a very simple method for high school mathematics research project

Our club has produced more than 30 refereed papers (nine countries, and our students talked at international conferences in six countries.

The Mathematica Journal

Any one can learn to be
creative, but he or she need a good chance to develop talents.

You do not have to be young to cultivate creativity.

We are going to present a method of research with some examples

A Japanese Dice Game Gambling

Problem 1. We throw two dices.

Please calculate the probability of the sum of the rolls of these dices is even.

A dice	Odd	Even
probability	$1 / 2$	$1 / 2$

Two dices A \& B	Odd \& Even	Even \& Odd	Even \& Even	Odd \& Odd
The sum of two dices	Odd	Odd	Even	Even
probability	$1 / 2 \times 1 / 2=1 / 4$	$1 / 2 \times 1 / 2=1 / 4$	$1 / 2 \times 1 / 2=1 / 4$	$1 / 2 \times 1 / 2=1 / 4$

Now we begin to do math research with this problem.
 Can you make a new one out of this problem?

Problem 1.
We throw two dices.
Please calculate the probability of the sum of the rolls of these dices is even.

Propose 1.1.

 We throw three (or more) dices.Please calculate the probability of the sum of the rolls of these dices is even.

This is not a new problem. You can find this in a text book.

Propose 1.2. We throw two dices.

 Please calculate the probability of the difference of the rolls of these dices is even.This is not a new problem. You can find this in a text book.

Propose 1.3.
 We throw two dices.

Please calculate the probability of the sum of the rolls of these dices is a multiple of three.

This is not a new problem. You can find this in a text book.

Propose 1.4.

We throw two playing cards.
Please calculate the probability of the sum of the rolls of these playing cards is even.

This is a new problem, so this is a good problem.

The answer for Propose 1.4.

The probability for the sum to be even is

$$
\left({ }_{28} \mathrm{C}_{2}+{ }_{24} \mathrm{C}_{2}\right) /{ }_{52} \mathrm{C}_{2}=0.493212
$$

The probability for the sum to be odd is

$$
\left({ }_{28} \mathrm{C}_{1} \times{ }_{24} \mathrm{C}_{1}\right) /{ }_{52} \mathrm{C}_{2}=0.506787
$$

number of cards	odd	odd(\%)	even	even(\%)
2	672	0.506787	654	0.493212

Propose 1.5.

We throw three (or more) playing cards. Please calculate the probability of the sum of the rolls of these playing cards is even.

The answer for Propose 1.5.

r	Bigger	odd (r)	odd $(r) / 52 C_{r}$	even (r)	even $(r) / s 2 C_{r}$
1	odd	28	0.5384615385	24	0.4615384615
2	odd	672	0.5067873303	654	0.4932126697
3	even	11004	0.4979185520	11096	0.5020814480
4	even	135296	0.4997543633	135429	0.5002456367
5	odd	1299984	0.5001939237	1298976	0.4998060763
6	odd	10179456	0.5000096274	10179064	0.4999903726
7	even	66888784	0.4999738684	66895776	0.5000261316
8	odd	376269696	0.5000008252	376268454	0.4999991748
9	odd	1839554904	0.5000046762	1839520496	0.4999953238
10	even	7910002496	0.4999993923	7910021724	0.5000006077
11	even	30201800664	0.4999989445	30201928176	0.5000010555
12	odd	103189758336	0.5000002660	103189648534	0.4999997340
13	odd	317506963984	0.5000002900	317506595616	0.4999997100
14	even	884482962816	0.4999998816	884483381784	0.5000001184
15	even	2240690280144	0.4999999056	2240691126176	0.5000000944
16	odd	5181597854336	0.500000088	5181596647779	0.4999999418
17	odd	10972794957444	0.500000355	10972793399976	0.4999999645
18	even	21335987301216	0.4999999677	21335990060434	0.5000000323
19	even	38180189126884	0.4999999850	38180191415016	0.5000000150
20	odd	62997316521216	0.5000000204	62997311372919	0.4999999796
21	odd	95995908274464	0.5000000068	95995905659456	0.4999999932
22	even	135266955835136	0.4999999853	135266963799024	0.5000000147
23	even	176435163909024	0.4999999970	176435166048576	0.500000030
24	odd	213192496171776	0.500000121	213192485860324	0.4999999879
25	odd	238775590354000	0.500000009	238775589521952	0.4999999991
26	even	247959260857728	0.4999999887	247959272090376	0.5000000113

There are 28 cases that the probability of getting odd number is bigger than that of even number.

There are 24 cases that the probability of getting even number is bigger than that of odd number.

Problem 2.
 Origami Cup Problem.

We cut off squares of $x \mathrm{~cm} \times x \mathrm{~cm}$ from the square sheet of paper in Graph 1, and make the rectangular parallelepiped in Graph 2.

Graph 2

Problem 2. Origami Cup Problem.

We cut off squares of $x \mathrm{~cm} \times x \mathrm{~cm}$ from the square sheet of paper, and make the rectangular parallelepiped.

Now we begin to do math research

 with this problem.Can you make a new one out of this problem?

Problem 2.
We cut off squares of $x \mathrm{~cm} \times x \mathrm{~cm}$ from the square sheet of paper, and make the rectangular parallelepiped.

Propose 2.1.

We cut off squares of $x \mathrm{~cm} \times x \mathrm{~cm}$
from the square sheet of paper, and make the rectangular parallelepiped.

Propose 2.2.
 We cut off squares of $x \mathrm{~cm} \times x \mathrm{~cm}$
 from the square sheet of paper, and make the rectangular parallelepiped.

Problem 3. Josephus problem

There are people in a circle, and we remove every other man clockwise starting with the first man. The last man will not be removed. Who is the last man?

Let's make a new problem. First, we change the problem into a simpler one.

Problem 3.

We put numbers in a circle, and remove every other numbers clockwise starting with the number one. Which is the last number?

Propose 3.1.

We put numbers in a circle, and remove every third numberclockwise starting with the first number.
Which is the last number?

Propose 3.2.
Put number in a circle. There are two process of removing every other numbers. One process start
with the first number, and it goes clockwise. Another process starts with the last number, and goes counterclockwise.

Propose 3.3.

Put Numbers in a line We starts with the first number, and remove every other number.

Once we reach the other end. we change the direction.
Which is the last number?

