1-11. 慣性の法則
先生 運動の3法則の中の『第一法則』は慣性の法則だよ。
先生 慣性は質量に比例して変化する"動き出しにくい"という性質のことだったね。
柚莉亜 はい。
先生 この『慣性』があるので、力を受けない限り、止まっている物体はずっと止まり続ける
もちろん受けている力が全てつりあっている時、つまり『合力が0』のときもそれと同じだよ。
一弥 つりあっているから動けないんですよね。
先生 この性質があるからだるま落しとかテーブルクロス引きができるんだね。
一弥 質量が大きければ大きいほど動きにくいからね。
柚莉亜 慣性があるから、あの人はお正月番組でテーブルクロス引きができるんだね。
先生 ああ。テーブルクロスじゃなくて、こんなことだってできるよ。
柚莉亜 わぁーっ、すごいすごい。
一弥 綺麗に入るものなんですね。
先生 まぁ、ちょっとしたコツがあって、それさえマスターすれば、君たちも出来るよ。
先生 さて、では動いているものはどうだろう?
QUESTION

一定の速度で走っている電車の中で真上に跳ねたらどうなる?

(1)床のとび跳ねた場所より後ろに着地

(2)床のとび跳ねた場所に着地

(3)床のとび跳ねた地点より前に着地

柚莉亜 (1)かなぁ?
一弥 いや、これは(2)です。
先生 さて、ところで問題の答えだが……。
その前に注意、絶対に電車の中で実験しないようにね!みんなの迷惑だよ。
代わりに建物の中で実験してみよう!
一弥 以前、実験していた小学生を見た事があります。
先生 じゃあ一弥君は、答えを知っている訳か……。
一弥 (コクン)
柚莉亜 ??
先生 まあ、とりあえず次の映像を見てほしい。
台車を同じ速さで直進させておく。そのとき、乗っている人がボールから手を離すと、どうなるだろうか?
先生 よく見てみると、ボールは台車と同じ速さで前進しながら落ちていってるよね?
ということは台車からボールを見ている人にとっては、真下に落ちたということだね。
答えは(2)だ。
先生 なぜこうなるんだろう? 手から離れたのに前進が止まらないのは一見不思議だよね。
落ちてゆくボールが受けている力は主に重力だけだ。
……ということは、『前進を止めようとする力が働いていない』ということなんだ。
よく考えてみると、はじめからボールも台車と同じ速度で動いているわけだから、ボールだけ勝手に、急に止まるはずないんだ。
柚莉亜 そっかぁ、電車に乗っている時点で、自分も速度を持っている(動いている)わけだから、
跳んだときも、自分は電車と同じく前のほうに動くんですね。
先生 そういうこと。
先生 それでは、台車が加速している場合はどうなるだろう。
一弥 加速していても、乗っている自分も加速しているから、さっきと結果は同じではないでしょうか?
柚莉亜 えぇと。……わからないから、わたしは一弥くんとおんなじで。
先生 ほんとにそうかな?
台車から離れた時点で、物体はもう進行方向に押されていないよね。
だからボールは、進行方向には『台車から離れた瞬間の速度』を保ったままになってしまうんだ。
つまり、その時点よりも加速している台車には取り残される。
これもボールが落ちている時かかっている力は重力だけだよね。
柚莉亜 あれれ? でもさっきの"一定の速さ"で台車が動いていたときも、台車から離れた時点で物体は進んでる方向に押されていないから、 あれも後ろに取り残されちゃうんじゃないのかなぁ?
先生 もう一度整理し直してみよう。
ボールは手から離れた時点で、止めようとする力が外から働かないから、進行方向には、離れた瞬間の一定速度のまま進む。
その後は、台車が一定の速度だったらボールも同じ速度だから、台車に乗っている人にとっては真下に落ちるし、
台車がそれよりも加速していけば、ボールは加速していないから取り残される。
柚莉亜 そっかぁ、台車の移動速度も一定の速さなんだね。
先生 ……と、これらのことをふまえて、
結局のところ、動いているものは力を受けないと、どういった運動をすると言えるかな?
例えば、オリンピックなどで、カーリングの様子を見たことがあるかい?
柚莉亜 この前オリンピックありましたよね? わたし見ました。
先生 そうかい? だったらイメージしやすいね。
あのストーンが「ッ―――……」と滑っていくように、
物体は力を受けないと、加速もせず曲がりもせずに、同じ速さでまっすぐに進むんだ。
先生 この運動のしかたを『等速直線運動』という。
これは後で詳しくやるよ。気になる人は用語集を見てね。
先生 それでは、ここで一つ質問。
今君たちはパソコンの前に座っている、とイメージしてほしい。
そのとき、今君たちの目の前にあるパソコンは止まっているかな?
……止まっているはずだ、君から見るとね。
それじゃ、君とパソコンは動いていないのかな?
一弥 "自分から見た"ということだけを考えると止まっていますが、範囲を広げて見方を変えると話は違ってきます。
例えばそうですね……地球は自転しているから、動いていると考えられるのではないでしょうか。
先生 うん、実はそういうことなんだ。
地球の自転軸に対しては、みんな一日一周西から東へ……計算してみると日本にいる人は1200km/h、
シンガポールにいる人は、1700km/hくらいの速さでぐるぐる回っていることになる。
赤道付近は一周の長さが長いからね。
その自転軸は、一年に太陽の周りを一周、10万7000km/hくらいの速さでまわってる。
太陽だって銀河系のなかで……というわけで、実際動いているものばかりなんだよね。
先生 そういったことから『「等速直線運動で動いている」のと「静止している」というのは同じこと』だと言えるんだ。
一弥 『地球上に完全に静止しているものは存在しない』ってことなんですね。
先生 うーん、むしろ『静止』と『等速直線運動』は特に分けることができないってことなんだよなぁ。
柚莉亜 じゃあ先生、そもそも『静止』って表現は間違っているの?
先生 いや、物体にとっては『静止』と『等速直線運動』は分けることができないけれど、 物体を見ている人(観測者と物体との関係の中では静止は静止、ということになる。
一弥 要は、それを見ている人の違いという訳ですね……。
先生 ともかく、それらから言えることは、止まっているものが"動き出しにくい"というのは、 等速直線運動しているものが"加速しにくい"、"進行方向が曲がりにくい"ということと同じだということ。 これが慣性の本当の正体だったんだよ。
柚莉亜 地球上で止まっているものも、地球が自転しているから、実は『等速直線運動』をしていることになるんですね。
先生 正確には『等速円運動』だけれど、地球は大きいから、"1秒あたり"とかだと、だいたい直線と変わらないと言えるかな。
まとめ

運動の第一法則『慣性の法則』

・物体が力を受けないか、受けている力がつりあっているとき、静止している物体は静止し続け、運動している物体は等速直線運動し続ける。

・逆に静止もしくは等速直線運動をしている物体は、力を受けていないか、受けている力がつりあっている

・物体は質量に比例して、静止している物体は静止し続けようと、運動している物体は等速直線運動をし続けようとする性質があり、これを『慣性』という。

先生 さて、では次の法則行ってみようか。

次へ進む

ページの先頭へ